.com.unity Forums
  The Official e-Store of Shrapnel Games

This Month's Specials

The Falklands War: 1982- Save $9.00
winSPMBT: Main Battle Tank- Save $5.00

   







Go Back   .com.unity Forums > Shrapnel Community > Space Empires: IV & V

Reply
 
Thread Tools Display Modes
  #1  
Old August 6th, 2003, 08:19 PM

spoon spoon is offline
First Lieutenant
 
Join Date: Apr 2002
Location: California
Posts: 790
Thanks: 0
Thanked 0 Times in 0 Posts
spoon is on a distinguished road
Default Re: Math problem

When in doubt, ask a programmer (if you have one handy...) Here's the reply I got:
-----
If you want to do all x*x sized games, then any power of x will support your goal. However, be warned that in a 27-man tournament of 3x3 matchings, you are talking about 9 games apiece (3^n-1).

Scheduling is a bit of a pain but manageable. The way I would do it is to schedule x^n-1 guys for the first round, and then everything sort of falls out of that just by pairing that guy off with the next guy down the list, then 2 down the list, etc.. For 27 guys (a-z and 1) at x=3. You essentially match up randomly in the first round, and then down diagonals for each subsequent round based on the first round.

ABC
DEF
GHI
JKL
MNO
PQR
STU
VWX
YZ1

AEI
DHL
GKO
JNR
MQU
PTX
SW1
VZC
YBF

AHO
DKR
GNU
JQX
MT1
PWC
SZF
VBI
YEL

etc.
__________________
Try out the Fantasy Empires Mod, a full conversion, fantasy based mod for SEIV Gold.
Click here to download.
Click here for the Fantasy Empires Mod discussion thread.
Reply With Quote
  #2  
Old August 6th, 2003, 08:42 PM
LGM's Avatar

LGM LGM is offline
Sergeant
 
Join Date: Apr 2001
Location: Minneapolis, MN, USA
Posts: 222
Thanks: 0
Thanked 0 Times in 0 Posts
LGM is on a distinguished road
Default Re: Math problem

I used a program. Here are two solutions:

N=7
3,5,6
3,4,7
2,5,7
2,4,6
1,6,7
1,4,5
1,2,3

N=15
7,11,12
7,10,13
7,9,14
7,8,15
6,11,13
6,10,12
6,9,15
6,8,14
5,11,14
5,10,15
5,9,12
5,8,13
4,11,15
4,10,14
4,9,13
4,8,12
3,13,14
3,12,15
3,9,10
3,8,11
3,5,6
3,4,7
2,13,15
2,12,14
2,9,11
2,8,10
2,5,7
2,4,6
1,14,15
1,12,13
1,10,11
1,8,9
1,6,7
1,4,5
1,2,3
Reply With Quote
  #3  
Old August 6th, 2003, 08:48 PM
geoschmo's Avatar

geoschmo geoschmo is offline
National Security Advisor
 
Join Date: Jan 2001
Location: Ohio
Posts: 8,450
Thanks: 0
Thanked 5 Times in 2 Posts
geoschmo is on a distinguished road
Default Re: Math problem

Quote:
Originally posted by LGM:
I used a program. Here are two solutions:

N=7
3,5,6
3,4,7
2,5,7
2,4,6
1,6,7
1,4,5
1,2,3

This isn't what I was looking for. This is everybody playing 3 three man games. I wanted everybody to play EVERYBODY else once and only once in a three man game. 7 players won't work for that. You need a power of 3 as Spoon says so 9, or 27, etc.

[ August 06, 2003, 19:48: Message edited by: geoschmo ]
__________________
I used to be somebody but now I am somebody else
Who I'll be tomorrow is anybody's guess
Reply With Quote
  #4  
Old August 6th, 2003, 08:50 PM
LGM's Avatar

LGM LGM is offline
Sergeant
 
Join Date: Apr 2001
Location: Minneapolis, MN, USA
Posts: 222
Thanks: 0
Thanked 0 Times in 0 Posts
LGM is on a distinguished road
Default Re: Math problem

Here is another solution. The patern appears to be 2^x-1. I would suspect that the next solution is at 63, but 31 took long enough to prove and my algorythm uses prime numbers with the mod function to find matches, so I don't want to look up another 32 prime numbers to make it that far.

N=31
15,23,24
15,22,25
15,21,26
15,20,27
15,19,28
15,18,29
15,17,30
15,16,31
14,23,25
14,22,24
14,21,27
14,20,26
14,19,29
14,18,28
14,17,31
14,16,30
13,23,26
13,22,27
13,21,24
13,20,25
13,19,30
13,18,31
13,17,28
13,16,29
12,23,27
12,22,26
12,21,25
12,20,24
12,19,31
12,18,30
12,17,29
12,16,28
11,23,28
11,22,29
11,21,30
11,20,31
11,19,24
11,18,25
11,17,26
11,16,27
10,23,29
10,22,28
10,21,31
10,20,30
10,19,25
10,18,24
10,17,27
10,16,26
9,23,30
9,22,31
9,21,28
9,20,29
9,19,26
9,18,27
9,17,24
9,16,25
8,23,31
8,22,30
8,21,29
8,20,28
8,19,27
8,18,26
8,17,25
8,16,24
7,27,28
7,26,29
7,25,30
7,24,31
7,19,20
7,18,21
7,17,22
7,16,23
7,11,12
7,10,13
7,9,14
7,8,15
6,27,29
6,26,28
6,25,31
6,24,30
6,19,21
6,18,20
6,17,23
6,16,22
6,11,13
6,10,12
6,9,15
6,8,14
5,27,30
5,26,31
5,25,28
5,24,29
5,19,22
5,18,23
5,17,20
5,16,21
5,11,14
5,10,15
5,9,12
5,8,13
4,27,31
4,26,30
4,25,29
4,24,28
4,19,23
4,18,22
4,17,21
4,16,20
4,11,15
4,10,14
4,9,13
4,8,12
3,29,30
3,28,31
3,25,26
3,24,27
3,21,22
3,20,23
3,17,18
3,16,19
3,13,14
3,12,15
3,9,10
3,8,11
3,5,6
3,4,7
2,29,31
2,28,30
2,25,27
2,24,26
2,21,23
2,20,22
2,17,19
2,16,18
2,13,15
2,12,14
2,9,11
2,8,10
2,5,7
2,4,6
1,30,31
1,28,29
1,26,27
1,24,25
1,22,23
1,20,21
1,18,19
1,16,17
1,14,15
1,12,13
1,10,11
1,8,9
1,6,7
1,4,5
1,2,3
Reply With Quote
  #5  
Old August 6th, 2003, 08:55 PM
geoschmo's Avatar

geoschmo geoschmo is offline
National Security Advisor
 
Join Date: Jan 2001
Location: Ohio
Posts: 8,450
Thanks: 0
Thanked 5 Times in 2 Posts
geoschmo is on a distinguished road
Default Re: Math problem

Quote:
Originally posted by spoon:
When in doubt, ask a programmer (if you have one handy...) Here's the reply I got:
-----
If you want to do all x*x sized games, then any power of x will support your goal. However, be warned that in a 27-man tournament of 3x3 matchings, you are talking about 9 games apiece (3^n-1).
Ok, I see how I need a power of x, so for 4 man games I'd need at least 16 players, and for 5 man I'd need 25 players. How did you calculate nine games each for 27 players in a 3 on 3 tourney though? With 27 player field if you play everybody once and only once and do it with 3 man games that would be (27-1)/2=13 games. With a nine player player field it would be (9-1)/2=4 games each.

Geoschmo
__________________
I used to be somebody but now I am somebody else
Who I'll be tomorrow is anybody's guess
Reply With Quote
  #6  
Old August 6th, 2003, 08:55 PM
LGM's Avatar

LGM LGM is offline
Sergeant
 
Join Date: Apr 2001
Location: Minneapolis, MN, USA
Posts: 222
Thanks: 0
Thanked 0 Times in 0 Posts
LGM is on a distinguished road
Default Re: Math problem

Quote:
Originally posted by geoschmo:
quote:
Originally posted by LGM:
I used a program. Here are two solutions:

N=7
3,5,6
3,4,7
2,5,7
2,4,6
1,6,7
1,4,5
1,2,3

This isn't what I was looking for. This is everybody playing 3 three man games. I wanted everybody to play EVERYBODY else once and only once in a three man game. 7 players won't work for that. You need a power of 3 as Spoon says so 9, or 27, etc.
I am not sure I follow. Player 1 places all 3 player games and plays every player once and only once. The same applies for player 2, 3, etc.
Reply With Quote
  #7  
Old August 6th, 2003, 09:03 PM

spoon spoon is offline
First Lieutenant
 
Join Date: Apr 2002
Location: California
Posts: 790
Thanks: 0
Thanked 0 Times in 0 Posts
spoon is on a distinguished road
Default Re: Math problem

Quote:
Originally posted by geoschmo:
How did you calculate nine games each for 27 players in a 3 on 3 tourney though? With 27 player field if you play everybody once and only once and do it with 3 man games that would be (27-1)/2=13 games. With a nine player player field it would be (9-1)/2=4 games each.

Geoschmo
Oh that? Must be programmer error... heh. That's why you should never listen to them...
__________________
Try out the Fantasy Empires Mod, a full conversion, fantasy based mod for SEIV Gold.
Click here to download.
Click here for the Fantasy Empires Mod discussion thread.
Reply With Quote
Reply

Bookmarks

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On

Forum Jump


All times are GMT -4. The time now is 03:00 PM.


Powered by vBulletin® Version 3.8.1
Copyright ©2000 - 2026, Jelsoft Enterprises Ltd.
Copyright ©1999 - 2026, Shrapnel Games, Inc. - All Rights Reserved.